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Dynamics of vortex lines in the three-dimensional complex Ginzburg-Landau equation:
Instability, stretching, entanglement, and helices
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The dynamics of curved vortex filaments is studied analytically and numerically in the framework of a
three-dimensional complex Ginzburg-Landau equation~CGLE!. It is shown that a straight vortex line is
unstable with respect to spontaneous stretching and bending in a substantial range of parameters of the CGLE,
resulting in formation of persistent entangled vortex configurations. The boundary of the three-dimensional
instability in parameter space is determined. Near the stability boundary, the supercritical saturation of the
instability is found, resulting in the formation of stable helicoidal vortices.@S1063-651X~98!01805-4#

PACS number~s!: 05.45.1b, 47.20.Ky, 47.27.Eq
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I. INTRODUCTION

Analysis of ‘‘universal’’ models plays a central role i
contemporary nonlinear dynamics. Such models, as w
Ginzburg-Landau and Swift-Hohenberg equations, allow
a quantitative description of arbitrary nonlinear system at
threshold of specific instabilities. The complex Ginzbur
Landau equation~CGLE!, derived some 20 years ago b
Newell @1# and Kuramoto@2#, has become a paradigm mod
for a qualitative description of weakly nonlinear oscillato
media~for a review, see Ref.@3#!. Under appropriate scaling
of the physical variables, the equation assumes the unive
form

] tA5A2~11 ic !uAu2A1~11 ib !DA, ~1!

whereA is the complex amplitude,b andc are real param-
eters, andD5]x

21]y
21]z

2 is a three-dimensional Laplace op
erator. The parameterb is the ratio of dispersion to diffusion
andc is the ratio of conservative to dissipative nonlineari
Although the equation is formally valid only at the thresho
of a supercritical Hopf bifurcation, it has been found that t
CGLE often reproduces qualitatively correct phenomenolo
over a much wider range of the parameters. As a result,
predictions drawn from the analysis of the CGLE~mostly in
one and two spatial dimensions; see, e.g., Refs.@4–7#! were
recently successfully confirmed by experiments in opti
and chemical systems@8,9#. Moreover, some results obtaine
from the CGLE~for example, symmetry breaking of spira
pairs! was instructive for an interpretation of experiments
far more complicated systems of chemical waves@10# and
colonies of amoebae@11,12#

In three dimensions the point singularity at the center
the spiral becomes a line singularity, known as a scroll,
vortex filament. The filaments can be open~scrolls!, closed
~vortex loops and rings!, knotted, or even interlinked or en
tangled. Scroll vortices had been observed in slime m
@13#, heart tissues@14#, and a gel-immobilized Belousov
Zhabotinskii~BZ! reaction@15#. Long-lived entangled vortex
patterns in three-dimensional BZ reactions were observed
571063-651X/98/57~5!/5276~11!/$15.00
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cently by the group of Winfree using the advanced opti
tomography technique@16#. Complicated vortex configura
tions have also been observed in numerical simulations
reaction-diffusion equations@17–19#

Theoretical investigation of scroll vortices in reactio
diffusion systems was initiated by Keener@20#, who derived
the equation of motion for the filament axis. In particular,
obtained that the collapse rate is proportional to the lo
curvature of the filament, leading to a collapse of a vor
ring in a finite time. The existence of nonvanishing vort
configurations and an expansion of vortex loops, also
served in numerical simulations of reaction-diffusion equ
tions, was associated with ‘‘negative line tension’’ of th
vortex filament@18#.

Recently, the dynamics ofthree-dimensional~3D! vortex
lines in the CGLE has attracted substantial attention@21–23#.
As a definition of a vortex line, we accept a line singular
of the phase of a complex functionA. Gabbay Ott and Guz-
dar @22# applied a generalization of Keener’s method for
scroll vortex in reaction-diffusion systems@20#. They de-
rived that the ring of a radiusR collapses in finite time ac-
cording to the following evolution law

dR

dt
52

11b2

R
. ~2!

In addition, there is no~at least, in the first order in 1/R)
overall drift of the vortex ring in the direction perpendicul
to the collapse motion. The collapse rate~often called ‘‘line
tension’’! n511b2 appears to be in a reasonable agreem
with the simulations@22#. This result generalizes Keener
ansatz by including the curvature-induced shift of the fi
ment’s wave number. Thereby, as follows from Eq.~2!, vor-
tex loops initially existing in the system will always shrin
~if, of course, there is no bulk instability of the waves em
ted by the vortex filament!, and under no condition can th
vortex loop expand.

In this paper we show that under very general conditio
and in an extensive part of the parameter space, vortex
mentsexpand and bendspontaneously and result in persi
5276 © 1998 The American Physical Society
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57 5277DYNAMICS OF VORTEX LINES IN THE THREE- . . .
tent vortex configurations even if there is no bulk instabil
of the emitted waves, and the spiral wave is stable in a t
dimensional system. A preliminary account of this work w
published in Ref.@23#. We have shown that vortex loop
may expand for any value ofb above some critical value
bc(c). The critical valuebc(c) can be relatively small for no
too largec. For example, our analysis predicts thatbc'2 for
c50. We prove that, forb.bc Eq. ~2! is not valid, because
formally higher-order, but in fact singular, corrections, om
ted in Eq. ~2!, cause severe instability of the filament a
persistent stretching. This instability is a three-dimensio
manifestation of the two-dimensional core instability of s
ral waves~calledacceleration instabilityin Ref. @6#!. Its ori-
gin can be traced back to the breakdown of the Galile
invariance of the CGLE for anye51/bÞ0, causing sponta
neous acceleration of the spiral waves@6#. Whereas in two
dimensions the instability is relatively weak, the situation
different in three dimensions. Using combined analytical a
numerical methods, we have proven that the thr
dimensional instability of the vortex filaments persists
beyond the core instability limit of a two-dimensional spir
wave, and typically has a much higher growth rate. It cea
to exist only when the core modes becomes stron
damped. This instability is not driven by ‘‘negative line te
sion.’’ It develops from a nontrivial response of the filame
core to bending, which results in additional ‘‘acceleration
terms in the equation of filament motion. As we will sho
the bending of the filament greatly enhances the instabi
and may result in the formation, after some transient, o
highly entangled and dense vortex configuration. The ‘‘h
dispersion limit’’ b@1 is readily fullfilled for many physical
and chemical systems~actually b larger than about 2 is
enough to have the effect!. For example, in the context o
nonlinear optics, where the CGLE can be derived from
Maxwell-Bloch equation in the good cavity limit@24#, this
parameter is very small:e51/b;102421023. For an oscil-
lating chemical reaction the diffusion rates of various rea
ing components can be varied over a wide range by add
extra chemicals.

The structure of this paper is the following. In Sec. II w
present an analysis of the filament motion in the ‘‘high d
persion’’ limit e51/b!1. This allows us to prove the insta
bility of a straight vortex filament with respect to bendin
and stretching on the basis of a computer-assisted analy
procedure. In Sec. III, we present the results of numer
simulations of the three-dimensional CGLE. We discuss
properties of a spatiotemporal intermittency which we ha
found in our simulations. In Sec. IV, we consider the form
stability analysis of a straight vortex filament with respect
periodic perturbations along the filament axes. Using a
merical matching-shooting algorithm, we have calculated
spectrum of eigenvalues, and determined the stability limi
a three-dimensional vortex line in theb,c plane. In Sec. V,
we present a weakly nonlinear analysis for the vortex fi
ment near the three-dimensional stability limit showing t
existence of traveling helix solutions. After some concud
remarks in Sec. VI we present in the Appendix an analyti
derivation of the equation of motion of the vortex line a
the stability boundary in the limit of the perturbed nonline
Schrödinger equation~NSE!.
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II. INSTABILITY OF WEAKLY CURVED FILAMENTS
IN A HIGH DISPERSION LIMIT

A. Derivation of the equation of motion

As a test for instability, we consider the dynamics of
weakly curved vortex filament in the high-dispersion lim
b@1. We apply the generalization of the method of Ref.@6#
for the case of 3D vortices, and make perturbations near
2D spiral wave solution to the CGLE. For convenience,
redefiner→r /Ab. Then Eq.~1! assumes the form

] tA5A2~11 ic !uAu2A1~e1 i !DA. ~3!

In the following discussion in this section, we assume 0,e
!1 to be a small parameter. Our objective is to relate
acceleration of the vortex filament] tv with the velocity v
and local curvaturek of the filament.

In order to develop the perturbation theory for a weak
curved vortex filament in three dimensions, we begin w
the stationary one-armed isolated spiral solution to Eqs.~1!
and ~3!, which is of the form

A0~r ,u!5F~r !exp$ i @vt6u1c~r !#%, ~4!

where (r ,u) are polar coordinates,v52c2k0
2(12ec) is

the rotation frequency, andk0 is an asymptotic wave num
ber. The real functionsF andc have the asymptotic behav
iors F(r )→A12ek0

2, c8(r )→k0 for r→` and F(r );r ,
c8(r );r for r→0. The wave numberk0 of the waves emit-
ted by the spiral is determined uniquely for givene,c @25#.
For e50 one has a type of Galilean invariance and, then
addition to the stationary spiral, there exists a family of s
rals moving with arbitrary constant velocityv5(vx ,vy) @6#,

A~r ,t !5F~r 8!expi Fv8t1u1c~r 8!1
r 8•v

2 G , ~5!

wherer 85r2vt, v85v2v2/4, and the functionsF and c
are those of Eq.~4!. ~This invariance holds for any stationar
solution.! For eÞ0 the diffusion term;«DA destroys the
family, and leads to slow acceleration or deceleration of
spiral proportional toev, depending on the value ofe. As
found in Ref.@6#, the equations of motion of the spiral cor
for e!1 assume the form

] tv1eK̂v50, ~6!

with the ‘‘friction’’ tensor

K̂5S Kxx Kxy

Kyx Kyy
D . ~7!

Because of isotropy the elements of the tensor satisfy
conditionKxx5Kyy ,Kxy52Kyx . Equation~6! can be writ-
ten in a more compact form:

] tv̂1ex v̂50, ~8!

where v̂5vy1 ivx is a ‘‘complex’’ velocity and x5Kxx
1 iK xy is a ‘‘complex’’ friction coefficient. It was shown in
the Ref.@6# that the coefficientKxx,0 for e!1, which im-
plies instability of the spiral core~see Fig. 1!. In the limit of
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5278 57I. S. ARANSON, A. R. BISHOP, AND L. KRAMER
the weakly perturbed NSE (c→`), the friction x is of the
form ~see Appendix A!: x'23.45c3exp@2cp#(16i3.92).
Since in generalKxyÞ0, the spiral core moves on a logarith
mic spiral trajectory.

Let us now consider the dynamics of an almost strai
vortex line. The analysis is conveniently performed in
filament-based coordinate system~for details, see Ref.@22#!.
The position in spaceX is represented by local coordinatess,
x̃ , and ỹ , wheres is the arclength along the filament, an
X5R(s)1 x̃N(s)1 ỹB(s), whereR is the coordinate of the
filament,N(s) the normal, andB(s) the binormal vector~see
also Fig. 1 in Ref.@22#!. On this basis the weakly curve
filament moving with velocityv can be written in the form

A~r ,t !5@F~r 8!1W~r 8,u,s!#expF i S v8t1u1f01c~r 8!

1
r 8•v

2 D G . ~9!

Here r 85r2vt, f0 is a phase, andW is the perturbation to
the spiral solution which we require to be small. We assu
that the velocity vectorv lies in the plane perpendicular t
the vector tangential to the vortex line, and may in gene
depend~slowly! on the arclengths. SubstitutingW into Eq.
~3!, we obtain at first order ine the linear inhomogeneou
~assuming] tv,v,k!1 and neglecting higher-order corre
tions ]sv,]s

2v, etc.! equation

L̂~W,W* !5H, ~10!

where

L̂~W,W* !5 i D̃W1
2i

r 2
]uW12iF

]

]r

W

F

2~11 ic !F2~W1W* !, ~11!

and D̃5] r
21(1/r )] r1(1/r 2)]u

22(1/rF )] r(r ] rF). The inho-
mogeneityH is of the form

H5
i

2
] tvrF2 i ] tf0F2ev@¹F1 iF¹~u1c!#1k~e1 i !

3@] x̃F1 iF ] x̃~u1c!#, ~12!

FIG. 1. Kxx ~solid line! andKxy ~dashed line! as functions ofc.
Lines are theoretical results, and symbols are the results of
dimensional simulations from Ref.@6# for e50.025.
t

e

l

where (r ,u) are polar coordinates in a local plane spann
on the vectors of normal and binormal, and we used
expansion for the Laplace operator in the local basis in
limit of small curvaturek and torsiont: D52k] x̃1] x̃

2

1] ỹ
2
1]s

21••• . We use the notationv̂5vB1 ivN , where
vB and vN are the binormal and normal components of t
velocity, respectively~note that the coordinatex̃ is directed
along the vector of normal!.

Separating real and imaginary part ofW, and representing
it in the form of a Fourier series

S ReW

ImWD 5 (
n52`

` S An~r !

Bn~r !
D exp~ inu!, ~13!

we arrive at the set of ordinary differential equations for ea
azimuthal modesAn and Bn . Since instability occurs only
for the first azimuthal mode, we consider the equation o
for n51 ~the equation forn521 is obtained by complex
conjugation!. At first order in e the inhomogeneous linea
equation for the correctionsA1 ,B1 is of the form

D̂A122S cF2A11c8F
]

]r

B1

F
1

iB1

r 2 D
52

e v̂
2i

F81
r ] tv̂
4i

F1
k

2
F81

ek

2 S Fc81
iF

r D ,

D̂B112S F2A11c8F
]

]r

A1

F
1

iA1

r 2 D
52

e v̂
2i S Fc81

iF

r D2e
k

2
F81

k

2S Fc81
iF

r D , ~14!

whereD̂5] r
21r 21] r2r 222(] r

2F11/r ] rF)/F and primes
denote differentiation with respect tor . Equation~14! can be
formally simplified by the transformationB15B̃1 2erF /4,
A15Ã1 @26#. After simple algebra, Eqs.~14! assume the
form ~we omit tildes onA andB)

D̂A122S cF2A11c8F
]

]r

B1

F
1

iB1

r 2 D 52
e v̄
2i

F81
r ] tv̂
4i

F,

D̂B112S F2A11c8F
]

]r

A1

F
1

iA1

r 2 D 52
e v̄
2i S Fc81

iF

r D ,

~15!

where v̄5 v̂2 ik/e. The solvability condition for Eqs.~15!

implies a unique relation between] tv̂ and v̄. If the solvabil-
ity condition is fulfilled, the solutionsA1 and B1 remain
finite atr 50 and do not grow exponentially forr→`. Slow,
powerlike growth of the solutions is permitted, since t
right hand side of Eqs.~15! grows linearly withr . Thus the
transformationB1→B12erF /4 does not change the solv
ability condition. Remarkably, Eqs.~15! coincide with the
equations analyzed in Ref.@6# for the case of the acceleratio
instability of a spiral wave in two dimensions. The only di
ference is that the normal velocity is modified by the curv

o-
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57 5279DYNAMICS OF VORTEX LINES IN THE THREE- . . .
ture k. Obviously, it results in the same solvability cond
tions as the corresponding equations of the two-dimensio
case,

] tv̂1ex v̄50, ~16!

with the same ‘‘complex’’ friction coefficientx. The equa-
tion of motion ~16! can be written in the matrix form

tv1K̂@ev2kN#50. ~17!

Note that, dropping the acceleration term in Eq.~17!, we
recover the result of Ref.@22# for b→`, since for the ring
vN5] tR and k521/R. Restoring the original scalingr
→r /Ab, we obtain] tR52b2/R. However, since in three
dimensions the local velocity in general varies along the v
tex line, even small acceleration may cause a severe inst
ity of the vortex line, because the local curvature becom
very large. Moreover, deviation of the local velocity from th
direction of normal will lead to a stretching and bending
the vortex line. Thus the acceleration term, which forma
can be considered as a higher-order correction to the e
tion of the motion, may play a pivoting role in the dynami
of a vortex filament. Our subsequent analysis and numer
simulations verify this hypothesis.

B. Almost straight vortex

Let us consider an almost straight vortex parallel to
axisz. We can parametrize the position along the vortex l
by the z coordinate:@X0(z),Y0(z)#. Since in this limit the
arclengths is close toz, the curvature correction to the ve
locity kN is simply kN5(]z

2X0 ,]z
2Y0)5]z

2r , where r
5(X0 ,Y0). Using ] tr5v, from Eq. ~17! we then obtain

] tv1K̂@ev2]z
2r #50, ~18!

Let us now consider perturbations of the vortex that are
riodic alongz. Due to the linearity of the problem, the solu
tion can be written in the formr;exp@ikz1l(k)t#, wherel is
the growth rate. We immediately obtain the following rel
tion for l:

l21x~el1k2!50. ~19!

Let us consider separately two casesk!e and k@e. For k
!e from Eq. ~19! we derive thatl52ex1O(k2). For k
@e we obtainl'6A2(Kxx6 iK xy)k. There always exists a
root with a large positive real part:l;k@e. Therefore, for
finite k, the growth ratel(k) may significantly exceed the
increment of the acceleration instability in two dimensio
~corresponding tok50): l52ex52e(Kxy6 iK xy). We
can expect that, as a result of such an instability, hig
curved vortex filaments will be formed. Hence the ‘‘sma
curvature’’ approximation considered above can be va
only for finite time. Moreover, one may not expect this i
stability always to saturate in a steady-state configura
with finite curvature~although we will show this possibility
to exist!. In contrast, we suggest that, frequently, reconn
tion of various parts of the filaments, formation of vorte
loops etc, will result in persistent spatiotemporal dynamics
a highly entangled vortex state. We expect a fall off of t
al
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growth ratel at largek which is not captured by the smal
curvature approximation used here. This effect will be
cluded in the treatment below.

III. NUMERICAL RESULTS

In order to verify our results numerically and to follow
later development of the instability, we performed simu
tions of the three-dimensional CGLE. We studied a syst
of 503–603 dimensionless units of Eq.~3! with either no-flux
or periodic boundary conditions. The numerical solution w
implemented on a parallel 16 processors Origin 2000 co
puter of the High Performance Computing Center at A
gonne National Laboratory. We applied an implicit Cran
Nicholson algorithm based on iteration scheme for invers
of a band matrix. The number of grid points was 1003–1283.
We performed simulations in the parameter regime aw
from amplitude turbulence in two dimensions@6# for various
values ofe andc.

We numerically verified our theoretical result for th
growth rate of linear perturbation for a straight vortex@Eq.
~19!#. As an initial condition we selected a straight vorte
line with small periodic modulation along thez axis. We
have numerically measured the growth rate as a function
modulation wave numberk. The results of our simulations
are summarized in Fig. 2. As we see from the figure,
growth rate indeed increases initially withk, and then falls
off for largek. The theoretical expression~19! shows reason-
able agreement with the simulations results for small eno
k. The maximum growth rate reached for intermediate val
of k exceeds in this case the growth rate of the tw
dimensional acceleration instability (k50) by more then two
orders of magnitude.

The long-time evolution of a straight vortex is shown
Fig. 3. As an initial condition we used a straight vortex pe
turbed by a small broadband noise. As we can see from
figure, the length of the vortex line grows. The dynam
seems to be very rapidly varying in time, and the line int
sects itself many times forming numerous vortex loops. T
long-time dynamics shows, however, a saturation whe
highly entangled vortex state is developed and the to
length of the line cannot grow further due to a repulsi
interaction between closely packed line segments. The
pendence of the line length on time is shown in Fig. 4. A

FIG. 2. The growth rate Rel(k) as function of k for e
50.02,c50.1. The solid line is the theoretical result fork!1, and
the dashed line with symbols is the result of numerical solution
3D CGLE. Inset: blowup of the smallk region.
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measure of the filament lengthL we used the following
quantity:L'S0

21*Q(A02uA(x,y,z)u)dx dy dz, whereQ is
the step function:Q(x)51 if x.0 and Q50 otherwise.
A050.1 was used as a threshold value to identify the vor
S0 is a constant determined from the condition that for
straight line the above integral coincides with the act
length. We can identify two distinct stages of the dynami
first, fast growth of the length; second, oscillations of t
line’s length around some mean value.

Strikingly, for small enoughe, we have observed two
distinct behaviors of the total vortex length depending on
value ofc. Above a critical valuecc corresponding approxi
mately to the so-called convective instability range of t
two-dimensional spiral (cc→0 for e→0), the total length
approaches some equilibrium value, and does not exhibit
nificant fluctuations. On the contrary, forc,cc , the total
length exhibits large nondecaying intermittent fluctuatio
around the mean value. Figure 4 demonstrates the two c
In Fig. 5 we present snapshots illustrating the structure of
vortex field in the intermittent case corresponding to
maximum of the length@Fig. 5~a!# and the minimum@Fig.
5~b!#, respectively. One sees that, in this situation, some s

FIG. 3. Instability of a straight vortex filament. 3D isosurfac
of uA(x,y,z)u50.1 fore50.02,c520.03, are shown at four times
50 ~a!, 150 ~b!, 250 ~c!, and 500~d!. A similar dynamics is also
observed for a larger value ofe.

FIG. 4. The dependence of filament lengthL on time t. The
solid line corresponds toe50.02,c520.03; the dashed line corre
sponds toe50.02,c520.5.
x.
e
l
:

e

g-

s
es.
e

e

g-

ments of vortex lines start to expand spontaneously, push
away other vortex filaments and in such a way making s
stantial vortex free holes around them. Then the instabi
takes over and destroys these almost-straight segmen
filament, bringing the system back to a highly chaotic sta
This dynamics can be considered as a three-dimensional
tiotemporal vortex intermittency, which is an extension
spiral intermittency discovered in the context of the tw
dimensional CGLE in Ref.@6#. For even smaller values o
c,21 we observed the transition to a highly chaotic sta
which is an analog of ‘‘defect turbulence’’ in the two
dimensional CGLE. In this regime small vortex loops nuc
ate and annihilate spontaneously, and large vortex filam
play no role in the dynamics.

The evolution of a closed vortex loop is shown in Fig.
Our simulations show that the three-dimensional instabi
may prevent the ring from collapse, causing the stretching
the loop in the direction transversal to the the collapse m
tion. However, we have also found that small enough rin
typically collapse, since then the instability described abo
does not have time to develop substantial distortions of

FIG. 5. Two snapshots of 3D isosurfaces ofuAu taken in the
regime of spatiotemporal intermittency,e50.02,c520.5. ~a! Left
image corresponds tot'620 for Fig. 4. ~b! Right image corre-
sponds tot'740.

FIG. 6. Sequence of snapshots demonstrating the evolution
vortex ring fore50.2 andc50.2.
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57 5281DYNAMICS OF VORTEX LINES IN THE THREE- . . .
ring. Even in this situation, the ring exhibits a few oscill
tions of the radius. Probably, the oscillations in the collap
rate in Fig. 2 of Ref.@22# are caused by the effect of th
acceleration term in the equation of motion, which plays
important role even in the stable case.

IV. LIMITS OF THREE-DIMENSIONAL INSTABILITY

The previous analysis indicates instability of vortex lin
in the limit e→0 for all c. However, it cannot describe th
boundary of the instability in thec,e plane since the transi
tion to a stable regime occurs for some finite value ofe. In
order to obtain the stability limit we performed a full linea
stability analysis of a straight vortex solution, which is n
limited to smallk ande.

The perturbative solution is of the form

A5@F~r !1W~r ,u,z,t !#exp$ i @vt1u1c~r !#%. ~20!

Substituting the ansatz~20! into the CGLE, and performing
the linearization with respect toW as before, then separatin
the real and imaginary part ofW and representing the solu
tion in the form

S ReW

ImWD 5 (
n52`

` S An~r !

Bn~r !
D exp@ inu1 ikz1l~k!t#, ~21!

we obtain an eigenvalue problem for the eigenvaluel(k).
Again, we restrict ourself by the analysis of most danger
perturbation harmonics withn51. The resulting equation
are of the from@compare Eqs.~14! and ~15!#:

D̂A12k2A122S c1F2A11c8F
]

]r

B1

F
1

iB1

r 2 D
5

l~k!

11e2
~eA11B1!,

D̂B12k2B112S c2F2A11c8F
]

]r

A1

F
1

iA1

r 2 D
5

l~k!

11e2
~eB12A1!, ~22!

where c15(e1c)/(11e2) and c25(12ec)/(11e2). The
functionsA1 andB1 are subject to the boundary condition
A1 andB1 are bounded atr 50, and decay exponentially fo
r→`.

We solved Eqs.~22! in the range of wave numbersk
numerically using a matching-shooting method with Newt
iterations from NAG library, routined02ag f. Since Eqs.
~22! are singular atr 50 and the solution is required on a
infinite interval, we applied the following method of solutio
of this rather difficult eigenvalue problem. The functionsA1
andB1 were expanded in a series forr→0, and we used the
asymptotic expansion forr→`. We replaced the boundar
conditions atr 50 andr→` by new boundary conditions a
sufficiently smallr 0 and sufficiently larger e . The boundary
values were obtained from the corresponding asymptotic
pansions, while the unknown parameters of these expans
e

n

t

s

x-
ns

were included in the shooting-matching procedure. Thus
numerical matching procedure was applied on a finite in
val r 0,r ,r e , where r 0 was typically 1022, and r e was
gradually increased until the eigenvaluel approaches its
asymptotic value. Since the unperturbed functionsF and c
are known only numerically, we determined them in t
same matching routine, solving three nonlinear equati
~for F, F8, andc8) and eight first-order linear equations~the
functionsA1 andB1 are complex!. We typically used 5000
mesh points on the interval of integration.

The spectrum of Rel(k) for two values ofe is shown in
Fig. 7. A typical localized core eigenmode, corresponding
this three-dimensional instability, is shown in Fig. 8. As w
can see from Fig. 7, Rel(k) indeed falls off for largek. As
expected from the previous analysis, the three-dimensio
instability persists beyond the two-dimensional core insta
ity. From Fig. 7, we see that fore smaller than about 0.3 on
has Rel(0),0 ~the core is stable in two dimensions!, how-
ever there is an instability for finitek. The relation between
the eigenvalue problem Eq.~22! and the acceleration insta
bility is presented in Appendix B.

We systematically tracked the boundary for the thre
dimensional instability from the condition max Rel50. The
results are shown in Fig. 9. As one can see, the thr
dimensional instability occurs over a much wider parame
range then the two-dimensional core instability. Moreov
the typical growth rate in three dimensions is much high
than in two dimensions.

We expect that forc→2` the critical line of the three-

FIG. 7. Rel and Iml as functions ofk for e50.3 ~solid line!
ande50.14 ~dashed line! for c50.5.

FIG. 8. ReA1 and ImA1 ~solid lines! and ReB1 and ImB1

~dashed lines! as functions ofr , obtained from numerical solution
of Eqs. ~22! for e50.3,c50.5, andk50.2, corresponding tol
50.01631 i0.122.
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dimensional instability again approaches thee50 line, simi-
larly to the two-dimensional core instability line@6#. How-
ever, our numerical matching procedure failed to conve
for this region of the parameters, since the critical mo
becomes less localized forc→2`.

V. WEAKLY NONLINEAR ANALYSIS

Our numerical simulations near the stability boundary
the three-dimensional instability have revealed a striking
sult: the instability saturates, leading to the formation o
stable traveling helix solution~see Fig. 10!. The pitch of the
helix is determined by the most unstable wavelength, and
radius of the helix vanishes when approaching the stab
boundary. The existence of the stable helix solution can
considered a result of saturation of the Hopf bifurcatio
which is thus of supercritical nature.

Although we have never observed saturation of the ac
eration instability in two dimensions, here the situation
different, since the most unstable mode has a different sp
structure than the acceleration mode in two dimensions.
helix near the stability limit can be described in the fram
work of a weakly nonlinear analysis for the relevant ord
parameter, which characterizes the local helicity of the v
tex line.

FIG. 9. Stability limits in three~solid line! and two dimensions
~dashed line!, obtained from linear stability analysis. Symbols re
resent the limit of the two-dimensional instability, obtained by
rect numerical simulation of the CGLE from Ref.@6#. Vortex lines
and two-dimensional spirals are stable to the right of the respec
lines.

FIG. 10. ~a! Stable traveling helix solution, obtained nume
cally for e50.3 andc50.5. ~b! The coordinates of the vortex lin
x(t) ~solid line! and y(t) ~dashed line! as functions of time for
some fixedz. A supercritical character of the bifurcation is appa
ent.
e
e
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-
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e
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The structure of the amplitude equations can be unc
ered from the following consideration. The growth ratel(k)
is symmetric with respect tok: l(k)5l(2k). Therefore, at
the transition point two modes withkc and2kc , correspond-
ing to counterpropagating waves of opposite helicity, sim
taneously become unstable. In general,V(k)5Iml(k)Þ0.
Thus at lowest order we shall obtain two coupled on
dimensional Ginzburg-Landau equations for counterpro
gating waves with the amplitudesU and V. Close to the
threshold the structure of these equations becomes unive

] tU1vp]zU5l~kc!U1 1
2 ]k

2l~kc!]z
2U

2~a1uUu21a2uVu2!U,

] tV2vp]zV5l~kc!V1 1
2 ]k

2l~kc!]z
2V2~a1uVu21a2uUu2!V,

~23!

wherevp5]kV(kc), anda1 and a2 are complex constants
The coefficients of the linear problem can be determin
from the solution of the eigenvalue problem@Eqs.~22!#. To
determine the coupling coefficientsa1,2, some additional
analysis is required. In principle, they can be extracted fr
three-dimensional simulations.

System~23! has been studied intensively in various phy
ics contexts~see, e.g., Refs.@27–29#!. It exhibits diverse
types of dynamic behaviors, including traveling waves, d
main walls, sinks, shocks, and spatiotemporal chaos. Thu
our interpretation, this chaotic behavior corresponds to s
nonperiodic spatiotemporal deformations of the helicoi
structure of the vortex line.

Equations~23! are simplified drastically if one of the
counterpropagating waves is suppressed, which is the
for Rea1.Rea2. Then this system is reduced to a sing
one-dimensional complex Ginzburg-Landau equation, wh
is of the form~in a moving frame!:

] tU5l~kc!U1 1
2 ]k

2l]z
2U2a1uUu2U. ~24!

We estimated the parameters of Eq.~24! from our linear
analysis and simulations@see Fig. 10~b!#. We obtained
l(kc)'0.020951 i0.1431,]k

2l(kc)/250.3112 i0.5315, and
a15a0

2(12 i0.3675), wherea0 is a parameter which can b
scaled out. For this set of parameters of the one-dimensi
CGLE (c520.3675 andb520.5315/0.311'21.708), the
homogeneous solution to Eq.~24! is stable, which implies
the stability of a traveling helix solution. However, we ca
expect that for other sets of parameters of the thr
dimensional CGLE, the parameters of Eq.~24! may fall into
the unstable region, e.g., the range of amplitude turbulen
This would imply chaotic oscillations of the helix. We ex
pect that these weakly nonlinear equations~23! may also
serve as building blocks for the understanding of weak v
tex turbulence in the CGLE in a certain region of paramete

An interesting question in this context is the followin
Could the helixes form a bound state similarly to spi
waves? One could imagine a stable double-helix state, s
lar to the DNA molecule. We have performed a prelimina
numerical investigation of the double-helix configuratio
The results presented in Fig. 11 indicate that the double h
is unstable: the outer helix expands, whereas the inner h

ve
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shrinks. However, we cannot exlude the possibility for ex
tence of a stable double helix in some~narrow! parameter
range of the CGLE.

VI. CONCLUSION

We have derived an equation of motion for the vortex li
valid in the high-dispersion limit of the CGLE. Using a ge
eral linear stability analysis, we have found that in a wi
range of parameters of the CGLE the vortex line is unsta
with respect to spontaneous stretching and bending, resu
in the formation of persistent, dynamic entangled vortex c
figurations. In fact, vortex lines in three dimensions are
stable in a much wider range of parameters then tw
dimensional spiral waves. This emphasizes the deficienc
previous approaches relating local filament velocity only
local curvature.

Slightly beyond the onset of the three-dimensional ins
bility, we found stable traveling helix solutions, which bifu
cate supercritically from the straight vortex. Qualitative
similar helixes have recently been observed experiment
in heart tissues@30#. Note that the acceleration instability i
two dimensions is subcritical@6#. Unstable helix solutions
can maybe serve as building blocks for a weakly nonlin
theory of three-dimensional vortex turbulence.

Let us now discuss implication of our result for the we
known phase turbulence problem in CGLE. As was found
Ref. @31#, in two dimensions phase turbulence is neve
global attractor, since it is unstable with respect to invas
by defect turbulence. However, in three dimensions we m
expect that at least in the region of parameters away from
stretching instability, the vortex rings collapse and the ph
turbulence regains its stability. But inside the thre
dimensional instability region, we may speculate that ther
always a possibility for creation of a large enough vort
loop which will expand and invade the phase turbulence

Our result could be verified in experiments with autoca
lytic chemical reactions in gels in the regime of oscillato
instability. The limit of a large dispersionb.bc can prob-
ably be achieved by doping with additional chemicals, th
changing the relative mobility of reacting components.

Persistent entangled vortex configurations are kno
from numerical simulations of excitable reaction-diffusio
systems@16,19#. Our preliminary investigation of reaction
diffusion systems shows that the underdamped core dyn
ics here is also responsible for long-lived vortex loops a
persistent entangled vortex configuration@32#. In this case,
the expansion of the vortex loops is not necessarily relate
a ‘‘negative line tension’’ of the filament, but again is th

FIG. 11. Sequence of snapshots demonstrating the breakdow
a double helix forc50.5 ande50.25.~a! t560, ~b! t5120, and~c!
t5240.
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manifestation of acceleration effects, similar to the situat
in the CGLE.

Recently, the amplitude equation governing the dynam
of an elastic rod was derived@33#. The structures of solutions
found in Ref. @33# are remarkably similar to those of th
CGLE. It is plausible to assume that, in some distinct ran
of the parameters, the equations of motion of the twis
elastic rod can be reduced to the equations for the vortex
in CGLE. We also speculate that our results are relevant
inviscid hydrodynamics. In the limit ofb,c→`, Eq. ~1! re-
duces to the defocusing nonlinear Schro¨dinger equation
~NSE!, which is a paradigm model for compressible invisc
hydrodynamics. Although the vortex lines are stable in
framework of the NSE, the corrections arising from t
CGLE cause their destabilization and stretching.
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APPENDIX A: LIMIT OF NONLINEAR SCHRO ¨ DINGER
EQUATION

1. Adjoint mode

In order to derive the friction coefficientx in Eq. ~16!, we
have to fulfill the solvability condition. In Sec. II, this wa
done numerically. The solvability condition means the o
thogonality of the right-hand side of Eq.~15! to the adjoint
mode of Eq.~15!. The adjoint equations are of the forms

D̂A1
†22S cF2A1

†1
1

rF

]

]r
~rc8FB1

†!2
iB1

†

r 2 D 12F2B1
†50

D̂B1
†12S 1

rF

]

]r
~rc8FA1

†!2
iA1

†

r 2 D 50. ~A1!

The solvability condition of Eqs.~15! can be expressed in
terms of functionsA1

† andB1
† :

] tv̂I 122e v̄I 250, ~A2!

where

I 15E
0

`

r 2dr FA1
†

I 25E
0

`

r dr @F8A1
†1~Fc81 iF /r !B1

†#. ~A3!

From Eq. ~A2!, we readily obtain the friction coefficien
@compare with Eq.~8!#

of
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x522I 2 /I 1 . ~A4!

For arbitraryc the localized adjoint modesA1
† andB1

† can
be determined only numerically@6#. However, forc→`, i.e.,
in the limit of the perturbed NSE, the adjoint mode, andx,
can be calculated fully analytically. Forc→` the selected
wave numberk0 vanishes~see, e.g., Ref.@25#!, the solution
approaches the vortex solution of NSE, and Eq.~A1! be-
comes self-adjoint. We introduce a small parameterm51/c
!1 and assumem@e. Equations~A1! read

D̂A1
†22S F2

m
A1

†1
1

rF

]

]r
~rc8FB1

†!2
iB1

†

r 2 D 12F2B1
†50,

D̂B1
†12S 1

rF

]

]r
~rc8FA1

†!2
iA1

†

r 2 D 50. ~A5!

For m50, Eqs.~A5! are self-adjoint, and the localized ad
joint eigenmode conincides with the complex-conjuga
translation mode

S A1
†

B1
†D 5S F8

2 iF /r D . ~A6!

In order to evaluate Eqs.~A4! we take into account that fo
any mÞ0 the functionsA1

† and B1
† decay exponentially for

r→`. Therefore, Eq.~A6! can be considered an approxim
tion valid within a finite interval 0,r ,R0, where the cutoff
R0@1 will be determined from the matching condition wi
the outer asymptotics of the solution. Forr→` we can sim-
plify Eqs. ~A5! using thatF2→12m/r 21•••, c8→k0 and
k0!1:

D̂A1
†22S 1

m
A1

†1
1

r

]

]r
~rc8B1

†!2
iB1

†

r 2 D 12B1
†50

D̂B1
†12S 1

r

]

]r
~rc8A1

†!2
iA1

†

r 2 D 50. ~A7!

From the first Eq.~A7! we can explicitly expressA1
† in terms

of B1
† , becauser→` for all terms in the first Eq.~A7! ex-

ceptA1
†/m andB1

† . In the first relevant order we obtain

A1
†5mB1

† ~A8!

Substituting now Eq.~A8! into the second equation~A7!,
and dropping higher-order terms, one has

] r
2B1

†1
1

r
] rB1

†2
1

r 2
B1

†1
2m

r

]

]r
~rc8B1

†!50. ~A9!

Equation~A9! is reduced to Bessel’s equation by the sub
tution B1

†5S exp(2mc), leading to

] r
2S1

1

r
] rS2S m2k0

21
1

r 2D S50. ~A10!

It has the localized solutionS5K1(mk0r ). Thus the outer
solution is of the form:
d

-

S A1
†

B1
†D 5CS m

1 D exp~2c!K1~mk0r !, ~A11!

whereC is a constant determined from the matching with t
inner solution Eq.~A6!. For r→` the functions decay expo
nentially: A1

† , B1
†;exp@22muk0ur#/r1/2, since c→k0r . The

solutions~A6! and ~A11! match in the intermediate regio
r @1 and mk0r !1. ExpandingK1(mk0r ) for small argu-
ments, we findC52 imk0.

2. Friction coefficient

To calculate the integrals~A3! we introduce the cutoff
R051/(mk0)@1 and split the interval of integration into tw
parts: 0,r ,R0 and R0,r ,`. In the first interval we use
the inner representation of the eigenfunctions@Eq. ~A6!#, and
in the second one the outer representation@Eq. ~A11!#. For
the inner interval we obtain

I 1
i 5E

0

R0
r 2dr FF85b01m lnR0

I 2
i 5E

0

R0
rdr @~F8!21~F/r !2#5b11 lnR0 , ~A12!

whereb0 andb1 are some constants. From the outer integ
tion for I 2, we have@usingc8→k,F→1 for r→`, see Eq.
~A3!#

I 2
o'E

R0

`

r ~k01 i /r !drB1
†'20.8842 ln~R0mk0!2 i0.666/m.

~A13!

In order to evaluate the integralI 1
o , we need the next order o

the functionA1
† to compensate for the logarithmic divergen

of the inner integral. From Eq.~A5! we obtainA1
†5m(B1

†

1 iB1
†/r 2). Thus we have

I 1
o5E

R0

`

r 2drF2 imk0S 11
i

r 2D GmK1~mk0r !exp~mk0r !

'20.884m2m ln~R0mk0!2
0.4i

mk0
2

. ~A14!

Combining now the outer and inner expansions, we see
R0 drops out. The friction coefficient is of the form:

x522
2 ln~mk0!1c12 i0.666/m

2m ln~mk0!1c02 i0.4/~mk0
2!

, ~A15!

where c15b120.884 and c05b020.884m. Now, using
Hagan’s expression for the selected wave number@25# in our
scaling of the CGLE parameters, one findsk0'2m23/2exp
@2p/(2m)2g20.098#. We finally obtain

x'2
13.3

m3
expS 2

p

m
22g20.196D S 11

ip

0.8D
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'2
3.45

m3
expS 2

p

m D ~113.92i !. ~A16!

The real part of the friction coefficient is always negativ
which implies the instability of the spiral core in two dime
sions and a stretching instability in three dimensions.

APPENDIX B: RELATION BETWEEN ACCELERATION
INSTABILITY AND STABILITY PROBLEMS

The result of Sec. II for weakly curved vortex filamen
can be formally derived from the linear stability proble
@Eq. ~22!# through systematic expansion ine up to second
order. The eigenvalue problem fore!m is of the form

D̂A122S 1

m
F2A11c8F

]

]r

B1

F
1

iB1

r 2 D 5~le1k2!A11lB1 ,

D̂B112S F2A11c8F
]

]r

A1

F
1

iA1

r 2 D 5~le1k2!B12lA1

~B1!

Now we expand Eq.~B1! in e. The solution is represented i
the form

S A1

B1
D 5S A~0!

B~0!D 1eS A~1!

B~1!D 1•••,

l5el~1!1e2l~2!
••• . ~B2!

We considerk;O(e), and denotek̄5k/e.
At zeroth order ine we simply obtainL̂(A(0),B(0))50,

where L̂ is the right hand side of Eqs.~B1!. Clearly the
solution is the translation mode
ce

ev

r,
,

S A~0!

B~0!D 5S F8

Fc81
iF

r
D . ~B3!

At first order ine, we obtain

L̂S A~1!

B~1!D 5l~1!S Fc81
iF

r

2F8
D . ~B4!

The equations have an exact solution corresonding to
‘‘family mode,’’ which exists fore50:

S A~1!

B~1!D 52
l~1!

2 S 0

rF D . ~B5!

At second order ine, we obtain equations

L̂S A~2!

B~2!D 5S ~l~1!1 k̄2!F82
~l~1!!2

2
rF

~l~1!1 k̄2!S Fc81
iF

r D D 1l~2!S B~0!

2A~0!D .

~B6!

These equations have a bounded solution if the solvab
condition is satisfied. It is easy to see that Eqs.~B6! are
identical to Eqs.~15! if we take into accountv̂;l,] tv̂
5l v̂ and k5k2. The solvability condition implies tha
(l (1))21x(l (1)1k2)50. The last term in Eqs.~B6! can be
omitted, since it generates a nonsingular solution@family
mode, compare Eq.~B5!#. Thus we reproduce the result for
weakly curved vortex@Eq. ~19!#.
ci.
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